generateLogNormalScaled(mu, sigma, desiredMin, desiredMax, LQpercent, UQpercent, lowerQuantile, upperQuantile)
Overview
The generateLogNormalScaled()
function generates a scaled random number based on a log-normal distribution with a specified mean ( \mu ) and standard deviation ( \sigma ) within the desired range.
Parameters
Parameter | Type | Description |
---|---|---|
mu |
Number | The mean of the log-normal distribution. |
sigma |
Number | The standard deviation of the log-normal distribution. |
desiredMin |
Number | The minimum desired value of the scaled random number. |
desiredMax |
Number | The maximum desired value of the scaled random number. |
LQpercent |
Number | Lower quantile percentage. Default is 0. |
UQpercent |
Number | Upper quantile percentage. Default is 0.999. |
lowerQuantile |
Number | Lower quantile value. Calculated by default if not provided. |
upperQuantile |
Number | Upper quantile value. Calculated by default if not provided. |
Returns
Return | Type | Description |
---|---|---|
random |
Number | A scaled random number in the range [desiredMin, desiredMax] . |
Example
local random = StatBook.generateLogNormalScaled(0, 1, 1, 100)
print(random) -- Output will vary
Mathematical Background
The function generates a random number x that follows a log-normal distribution and then scales it to the desired range. The formula used for scaling is:
\text{random} = \text{scaleToDesiredRange}(x, \text{lowerQuantile}, \text{upperQuantile}, \text{desiredMin}, \text{desiredMax})
Where scaleToDesiredRange
is a function that takes the random number x , lower and upper quantile values, and desired minimum and maximum values as arguments, and returns a scaled value that falls within [desiredMin, desiredMax]
.