oneSampleProportionCI(k, n, CL)

Overview

The oneSampleProportionCI function calculates a confidence interval for a proportion in a statistical population, based on the proportion observed in a sample. The function employs the Wald-Agresti-Coull (WAC) method, a modified version of the standard Wald method to calculate the confidence interval.

Parameters

Parameter Type Description Default
k Number Number of successful outcomes in the sample. -
n Number Total number of trials in the sample. -
CL Number Confidence level for the confidence interval. 0.95

Returns

Return Type Description
pHat Number The estimated proportion based on the sample.
lowerCI Number Lower bound of the confidence interval for the proportion.
upperCI Number Upper bound of the confidence interval for the proportion.
testType String Specifies the type of test conducted, in this case, "One Sample Proportion CI".

Example

local k = 55
local n = 100
local CL = 0.95
local result = oneSampleProportionCI(k, n, CL)
print(result.pHat, result.lowerCI, result.upperCI, result.testType)  -- Output will vary based on the input

Mathematical Background

The estimated proportion \hat{p} is calculated as:

\hat{p} = \frac{k + 2}{n + 4}

The standard error SE of the estimated proportion is calculated using:

SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n + 4}}

The confidence interval is given by:

\text{Lower CI} = \hat{p} - Z_{\alpha/2} \times SE
\text{Upper CI} = \hat{p} + Z_{\alpha/2} \times SE

where Z_{\alpha/2} is the value from the inverse of the standard normal distribution corresponding to a 1- \alpha/2 confidence level.